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ABSTRACT

The detailed development of the analyses which are the bases for the two-
stream axisymmetric base-pressure programs (TSABPP-1,2) is presented.
For the '"corresponding" inviscid flow field, these analyses include the Prandtl-
Meyer expansion, the oblique shock wave, the slip line, and the method of
characteristics. For the turbulent-mixing component, two-dimensional constant--
pressure mixing and its application to axisymmetric flows are considered.
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. INTRODUCTION

The purpose of thi : report is to present the detailed development of
the principal relationships a1  solution techniques which are the bases for the
two-stream axisymmetric base~pressurc programs (TSABPP-1, 2). While the
intent heie is to inform the interested program user about these specific pro-
grams, it should also be noted that various subsections of these programs are
more general, and as such, can serve as basic building biocks in the analysis
of other problems. Although an atlempl has been made to make this report
complete in itself, it is intended and should be considered as supplemental to
the technical reports [1, 2] docvmenting the compuier programs.

A uniform notation has been maintained through the reports and the com-
puter programs; since comprehensive lists of symbols are included in the above-
referenced technical reports, they are not repeated here.

2. DISCUSSION

In the development of the base-pressure programs, the analyses and
the resulting programs were subdivided into three major parts. The first part
was the calculation of the "corresponding' inviscid flow field; the second part
was the calculation of the mixing component; and the third part was the overall
organization of the former calculation sequences into a master program for
determining by iteration the base-pressure and base-temperature solutions,
This note is not concerned with the latter part, since it is discussed in detail
in [1], but rather with the former parts.

The inviscid flow-field analysis consists of the calculation of the
supersonic external (free stream) and the internal (nozzle) flows by the method
of characteristics. The external flow is over a solid afterbody followed by a
constant-pressure boundary region. The internal flow is assumed to be from
either an ideal conical or uniform flow nozzle discharging into a region at con-
stant pressure. The supersonic external and internal flows interact at their
impingement point, if it exists, to form an oblique shock system and a slip line,
The component flow-field analyses are discussed in Appendixes A and B.

The mass entrainment and energy transport rates, due to the turbulent
mixing regions formed between the fluid in the wake region and the internal and
external streams, are estimated by locally superimposing the two-diniensional
constant-pressure turbulent-mixing model at the impingement peoint of the "cor-
responding' inviscid streams. The mixing analysis and the "corresponding"
inviscid {low-field analyses are then related by the recompression criteria and
the requirement of conservation of mass and energy in the wake region. These
analyses are discussed in Appendixes C and D.

i
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Appendix A

MISCELLAMNEQUS GAS DYNAMICS FUNCTIONS

1.  Prandtl-Meyer Expansion (EMSIPPM)

The flow properties before and after a centered Prandtl-Meyer
expansion (Figure A-1) are related through the following expression |3]:

w(l\'lf',‘» ME ) = w(M*, M ) + 0 - (A-1)
2 max 1 max

where the turning angle, 6, is defined as
6= :F(Oz - 01) (A-2)

for left- or right-running waves, The w (M*, Y ) function is delined by

»,

. 2 1
- " JE—— ~i M* ~ 1 /2
w { M, M"'], <) = T tan -2————2
ma max M* - M
a
2 7.
= , I;:: — 2
tan~! | ne? ——Né————l——z (A-3)
AR N o M
max

where (corresponding to M — =0, M — A% ) ,
max

7

M;:;lax = [(v+1)/(v - 1)] (A-4)

The usual problem to be solved is with values of [M¥,8,v] specified, to
find from equations (A-1) and (A-3) the solution value of Mj. The numerical
solution of these equations can be easily and quickly accomplished as follows.

For expansions, the value of w(M*, M ) must be in the range
2 max

T
/P:c , M = 5;«, M+ < - e - ‘\ =0
w(l\ 1 : Ima.x) w(l\12 11ma.x) 2 [Mmax 1 1 (A-5)

and correspondingly, the solution value of M=ié must be initially in the range

‘V’ q o= TR = \ e
M1 I“2 ! 1ma.x

wadbiactann
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FIGURE A-1. PRANDTL-MEYER EXPANSION NOTATION

For small turning angles, oblique shock waves can be approximated by
"reversible compressions'; the initial solution range for those cases is:

.z g b4 < Ex3 P -
0 = w(M2,Mmax) w<Ml.Mmax> (A-T)

and
1= M = M® . (A-8)

For eitheran expansion or an ddmissible "reversible compression, " rapid
convergence to the solution value of M¥ is achieved by a process of interval
halving and, at the same time, successive reduction of the possible solution
interval. The solution is always bounded on the negative or positive side relative
to the sign of the difference

{w“‘) (M"-‘(n) , M ) - w(M*,M* )J = q'®
max 2’ Tmax

L(n-1 .
>,<(n ) = I\,IBIE

P P On the other
(n-1) _

(1)
% = M>*
and MN MN .
process is continued until the solution is isolated within a calculated interval;
{n)

(n) (n-1) (n)

Hd " <0, M (n).

and N
(n)

N is replaced by M*

(n) (n-1)

hand, if d >0, M’; is replaced by M* This

i.e., the sign of d has changed at least once. Convergence to the final

1
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solution is then achieved by interpolation and a continuing reduction of the solu-

tion interval as before; the solution procedure is illustrated for an expansion in
Figure A-2.

: ) =
: : (“MAX > [ Miax =] :
| wp?, W __ —
; | 3
= |
! o1
w (r) ‘iuP(S) _____ e e e e e e — - l :I': i
: “"(")l “, SOLUTION | | inle i
| .
(3) 2 "
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. l & H
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M2 | @l
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0 1 ! I
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;
' M@ a2
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. _ INTERVAL | ‘
i HALYE e (3) Mﬁa)
INTERPOLATION

o ) M) gl

FIGURE A-2. SOLUTION PROCEDURE FOR A PRANDTL-MISYER
EXPANSION

1
|

The solution criteria are specified as

d (n)/w (I\!P,'ﬁ, I\,I:k )
2”7 max

¥

< gy

and/or

TTypically for ¢ = ¢ = 1074, 4 < n < 6 iterations are reguired.
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where L!(u) is the current volue of the difference function and M’“( ), M *(n)
) . ‘-: N P

are the current bounds on the solution My .

2. Obligue Shoek Wave {(PRSHK)

The general flow situation and notation associated with the analysis
of an obligue shock wave are shown in Figure A-3. The expression relating the

Ml (Ml‘)
P\
Y

FIGURE A-3, OBLIQUE SHOCK-WAVE NOTATION

oblique shock-wave angle (¢), the appreach Mach number (M), the turning
angle (6), and the specific heat ratio of the gas (y) is given [4] as:

(b‘in2 0)3 + b(sin® 0)2 + c(sin2 g) +d= 0 {A-9)
where
alf + 2 .9
b= -|———— + v sin® § (A-10)
M?

TTypically for ¢, = «, = 107!, 4 < n < 6 iterations are required.

o al
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e= (BT O DL O DGz, L a-1
i 7 M
Mi
g - ~cos? § (A-12)
M}

Equation (A-9) is simply a cubic cquation in (sin® g) whose solution is known,
The solutions to equation (A-9) can be written as [5]:

= o [A $,2a-1 .k -
Y(I) = 2 3cos 34 3 i T (A-13)

where1 = 1, 2, or 3 and the Y(I) are the three roots to the cubic equation for
(sin® ¢). The quantities (¢, A) are determiuned from:

A= -;— (3¢ - b)) (A-14)
1 3 ’ ’ -
B = 27 [2b" - 9bc + 27d] (A-13)

/s

B

¢ = cos !\ ([-B/2][-AY 27] (A-16)
For the values of Y1) te be real, the values of (A,B) must satisfy the require-

ments that:
A< (A-17)

and

1
(-B/2} = [-A3/27]/2 . (A-18)

If equations (A-16) and (A-17) are satisfied, the three roots, Y(I), will all be
real. The smallest rnot corresponds to a physically impossible process; the
next larger root corresponds to a weak oblique shock; and the largest root
rorresponds to a strong oblique shock.

After the weak-shock solution value of (sin? u) has been fou:? all other
pertinent dimensionless ratios for an oblique shock wave can be found
[4, equations 128 through 149]. Specifically, the static pressure ratio across
the shock is found from:

. P
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2yMi(sin’c) - (v - 1)
(y + 1)

p, A
7 (A-19)

3. Slip-Line Analysis (SLIP)

For an initial slip line solution range, assuming it exists, it is known
thut (Figures A-4 and A-5)

0. <0 <8 (A-20)

since

(51 =- (01 - GS)
. 62" 61= (01 '02)

52 == (02 - GS)

subtracting equations (A-21), the result is:

’ (A-2 1)

(6; = 63 = (04 - 6y = constant across the shock system. (A-22)

1 1
Let 0( )and 0( S)bound the solution on the right and left, respectively. Initially,

1s 2
(1) _
Ols - 61
0(1)_ ) since 92< es< 91 . (A-23)
28 2

The solution range can possibly be narrowed for the P-9 characteristics (weak
solution) as shown in Figure A-5. Following this figure, let

1M - (91 B ‘51M>

oM (‘)2+ ‘52M)j

are the maximum turning angles for the given vy and M;k. Now for

0

diM > 0 (A-24)

0

where 6iM

the solution range,
(1)

a) if UIM > 92, set025= 01M
(A-25)
and/or (1)
b) 1f02M < 01, set 91s = OzM . ]
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Therefore, depending on the magnitudes of 6, 04, 0., 0___, the solu~-
- : < iM' T 2M
tion range is defined by
(1) _ (1) _ _
Oine ™ %0 Y287 Uiy 016 = 910 91 Oy
or <y < (A-26)
1 _, 8 (1) _ N
Oim <02 Op5='Y, U16= o %17 2m

(1) (1)

For the possible solution range 02S < Os < ols‘ does a solution exist?

23 1M 1s
1) - . .
0( < ()S < o 1) Cases 1 and 2, Figure A-6, illusirate typical slip-line solu-

2s ls
tions and the determination of the initial solution range.

- - -(1 -
If l:}?(l)< P and P( )< sz] , then a solution must exist in the range

CASE | (2) - CASE 1

" RANGE RANGE

[P%
-l; : o : ﬁ /
l . |soLuTion ' t . L soLuTION

FIGURE A~6. SOLUTION EXAMPLES

(1) . o o
1M 1s > P no weak so.lutlon._;exmts for thie given

and/or P oM’
conditions (Case 1, Figure A-T).

3
I P(zls' > P

£0,,,> 0, — Nosolution (Case 2, Figure A-7).

2M

If 02M > UlM - Dossible solution; needs further analysis (Cases 1, 2

in Figure A-6 and Case 1 in Figure A-7).

10
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FIGURE A-7, NO-SOLUTION EXAMPLES

;‘if;er the existence of a slip-line solution and the initial solution interval,
¢ d)

(1f.

g, " G , have been established, convergence to the solution value of the

8
slllgl-ll.ne angle GS can be rapidly achieved by a process of interval halving and

successive reduction of the solution interval. The solution interval is reduced
according to the sign of the normalized difference in the pressure ratio

(Figure A-5),
a® . ["151(“) - '152“‘)]/[0 5 (P(“) (“’)] . (A-27)

Ifd(n)<0, then Gm_l) is replaced by 6( and e(“) O(n 1\. Or fd(n) >0,
6 2(:— ) is replaced by 6 M) gnd 6, (n) Gin D This process is continued untii

11
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d(n) <€

is satisfied. Typically for ¢= 10~5, convergence is achieved for n < 10.
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Appendix B
METHOD OF CHARACTERISTICS

This appendix is based in part upon a previous report [8].

1. Basic Equations

For steady irrotational axisymmetric flow (3], the differential

equation for the complete velocity potential in terms of the cylindrical coor-
dinates (X, R) is

2 2 2 2 2
u'\Vo*¢ __ uv 0% veyete @ _
v c*) axt 2 C?oxoR <1 cz) 2T R- 0 (B

where
c?= k- 1—;—1 @+ vl V= (4 vd) (B-2)
and
0% 5%
= — = —, -3
VEIx VT BR (B-3)

The condition that the derivatives of:

a¢ o¢

— d —

ox 2% 3R

may be discontinuous along curves on the solution surface to equation (B-1)
. % bl 0%
s ¢ : s »
(wlnch implies tha ax? aR? and 23R are indeterminate along such

curves -- the characteristic curves) yields the following:

a) The physical characteristics:

(g%) = tan (0 ¥ @) (B-4)
LI

13
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b) The hodograph characteristics:

cot «o sin § sin « (dR)I, I 0

)y o+~ @y s @ R - (B9

The Family I (right-running) and Family II (left-running) characteristics and
the applicable notation are shown in Figure B-1.

FAMILY iI

<|

S FAMILY |

o) )

FIGURE B-1. PHYSICAL CHARACTERISTIC CURVES

Intraduction of the velocity of sound at sonic conditions as a reference

= 2VIR 1/2
C —[y — T°] (B-6)
and
M* = V/C* (B-7)
into equation (B-5), yields
(dM*)I,II 1 sing sin «

(do) (dR)I o- 0. {B-8)

LI ¥ (Mtan® R sin (0 = @
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The problem of selving cguation (13-1) subject to the imposed boundary
conditions then becomes equivalent to solving the set of simultaneous ordinary
differential equations (B-4) and (B-8) under the same conditions. Various "unit
processes" encountered in the numerical Soluiion of equations (B-4) and (B-8)
will now be discussed.

2, Field Points (FPS)

For two known points (1) and (2), Figure B-2, on the Family 1
and II characteristics, respectively, the location and flow variables at the
unknown point (3) at the intersection of these characteristics can be determined
by use of the characteristics relationships, equalions (B-4) and (B-8).

— X
FIGURE B-2. GENERAL FIELD POINT
To a first approximation, the coordinates of point (3) are given in finite
difference form as

[(Rp - Ry) + Xjtan (8 - a)y3 - Xy tan (6 + oz)m]T

X, = [tan (0 ~ )3 - tan (0 + @)y

(B-9)

1}bThe notation { )i3 indicates that average values between the poinis (i)

and (3) are to be used.
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and

Rg = R + (X3 - Xyjtan (0 ~ a)qg3 (B-10)

where {0 + (-1) e ]i3 is defined as the average value of the quantity between the

points (i = 1,2) and (3). Correspondingly, the flow variables at (3) are given

|
|

by:
0. = LPus0i ¥ Pollp? (M} - M) + Qu(B; - R)) =~ Qu(Bg - Ry)]
s [Pi3 + Pyl
{B-11)
and
My = [Mf - Py(ug - 09) + Qu(Ry - Ry}, (B-12)

where Q13 and P (i = 1lor2) are coefficients based on the average values

between the poin. . (i) and (3). . !

These coefficients are defined as:

(B-13)

Pi3 = (M*tan a)i3
1
]
and
Qig - P.? sin 0 sin ai . . (B-14)
R sin [0 + (-1) a]
i3
The values of {X, R, M*¥, 0]; are determined initially by assuming that §

the flow variables at point (3) are simply the average of those at points (1) and
(2); hence,

1
03 = 5 (04 # 09)

o Te——"—

s 1 e 3
M =-:-2- (M + My)

Then by using equations (B-9) through (B-12) in sequential order, a first approxi-~

2% wlideh

1
mation to the values [X, R. M*,0 ]3( ) can be determined. These values are
. then used to determine the average quantities and subsequently the next approxi-

4
[ 16
t
3
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maiion {X, R, M*, ¢}y ~ . 1Ii this procedure of successive approximations is
repeated, values for the variables at point (3) for two successive approxima-
tions (n - 1) and (n) will be obtained; i.e.,

(n-1) n)

[X, R, M¥, 0] and [N, R, M '=,u]3(

If the problem areas discussed below are not encountered, the values calculated
by this procedure stabilize rapidly, and the iteration is terminated when

[Oa(n) _ Ug(n—l)]/ua(n)
[Ma,(n) ) Ms*('“'”] ﬁu;““’

Typically for values of ¢;, ¢, = 10~%, the iteration stabilizes for 5 < n < 10.

= (B-15)

or

=

o . (B-16)

Difficulties encountered in the course of this iterative procedure have
definite physical significance that can be traced to:

a) Either of the characteristics being oriented such that the quantity:

[0 + (-l)la] ~ 0 (B-17)
i3
or, in other words, a characteris*ic is horizontal in the flow field
for which :
. -« . , : -1t
Qi3 « (B-18)

b) Compressions developed in the flow field due to wave coalescence
such that

™ < (B-19)

In the first case, the guantity

Q4 (Ra - Ri) (B-20)
must be reconsidered when
[o + (-l)la} —-0 . (B-21)
i3
17
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The incremental length, Af, along either characteristic is given by

(RS _ Ri) (B-22)

sin [0 -+ (-1)ioz ]
L i3

Af =2

and as [U + (-1)1({],‘;

<

-0, Al - ()\3 - Xi) . Hence, the quantity in the

characteristics equaiions (B-11) and B-12) must then be replaced by the limit-
ing value of equation (B-20j), i.e.,

_ - sin 0 sin « ( _ o
Qi‘J(RS Ri) 113[ "R . x3 Xi) (B-23)
i3
when
[o+ (nl)laJ ~0 . (B-24)
i3

The second problem area usually results from "foldback'’ of the charac-
teristics network as a result of the coalescence of the same family waves. To
treat this problem, provisions must be made in the overall flow-field claculation
sequence so that the shock formed in the flow field as a result of this coalescence
can be ireated and thus, "foldback" of the characteristics network avoided.

d. Axis Points (APS)

If any one of the points (1, 2, or 3) is located on the axis of sym-~
metry, then,

Rj, Uj = 0 j= 1, 2, or3 {B~25)

and the calculation procedure of section 2 is modified accordingly for the axis
point calculations. No particular problems are encountered when these condi-
tions are imposed on the field-point calculation sequence since the term [ R~!]
only appears in the characteristic equations as an average value in the
coefficients Qi‘&'

The two axis point calculations encountered in the primary flow-field
analysis are shown in Figure B-3.

18
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FIGURE B-3. AXIS POINTS

For the one case, the unknown point (3) is on the axis, and consequently,
Rg, 03 = 0 . (B'26)
Then the remaining values [X, M*]; are found from:

Ry
2" fan (0 + a)og (B-27)

Xs= X
Mi = My - Py - QuPy . B-28)
To start the calculation sequence, it is assumed that
My = M; .
Then a first approximation [X, M*la(l) can be found from eguations (B-27) and

(B-28). Using the successive approximation technique, the calculations are
continued until:

l l:(M::;) (n) _ (M;k) (n—l)]/Mg; (n)

Thus the conditions at point (3) are determined as: [X, 0, M%, 0] (n) .

= €. (B-29)

19
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In the other case, the known point (2} is on the axis where:
Rz, 02 = 0 .

The calculation sequence for determining the values at point (?) are the same
as outlined for the field-point analysis (section 2).

4, Boundary Points

For the base-flow analysis, only two types of boundary-point calcu-
lations occur, viz., the constant-pressure condition for the separated flow
region and the solid boundary condition when an afterbody precedes the external
stream's separation point.

a. Constant Pressure Boundary Points (CPBS)

Along the boundary (Figure B-4) the condition of constant
pressure is expressed by:

M3 = Mé = NLé = constant, (B=30)

where M-é is found from the isentropic flow function

P 2 = B = -
Po [Y.MB] = PB = constant. (B-31)

1))

(2)

Mg, B

B™ CONSTANTS

— X

FIGURE B-4. CONSTANT-PRESSURE BOUNDARY POINT
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A first approximation to the spatial location of the unknown point (3) is found
from the streamline condition, between points (2) to (3), where

(Rg - Rp) = (X3 - X,)tan 6y (B-32)
and along the I-characteristic, between points (1) to (3), where
(Rg - Ry) = (X - X)tan (0 - a)yy . (B-33)
Then X; is found from:

[R1-32+X2ta.n 923"'X1 tan (9 - a>13]

X3 - [tan 923 - tan (8 - «a) 13] (B-54)
The local flow direction is 1i ~n given by:
; e b T
3= 0y - [{My - M{) - Q;3(Ry - R))] (B-35)

Py
The calculation sequence is initialized by assuming that

1
03 %;(01+ 05)

i

The corresponding values of [Xa(l) . "R3(1) ,93( )] are then found from

equations (B-30), (B-34), (B-32), and (B-~35). By use of these equations and
the current approximations to the variables at point (3) to evaluaie the average-

value coefficients, the estimates for (X, R,0]; can be improved by successive

approximations until
\ :

< ¢

l[eg(n) - Ga(n-l):]/ea(n)

Thus the variables at point (3} are determined as [X,R;é]g,(n

) and [Mg: = ME] .

b. Solid-Boundary Points (BTBPS)

Along a solid boundary (Figure B-5) the flow must be tangent
to the surface, and therefore at any point (3) on the surface, the local flow

direction is given by:
(dR \ ‘| V
—1 S
03 = ten . (B-36)

\dXS/a_]

TQ,;, is evaluated accordingtosection 2, equations (B-14) or (B-23).
21
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FIGURE B-5. SOLID-BOUNDARY POINT

The solid-boundary profile is assumed to be described in the meridional plane
by a functional relationship of the form

R = R (xs> . (B-37)

However, before the streamline condition specified by equation (B-36) can be
applied, an initial estimate of the location of the unknown point' (3) on the solid-
boundary must be made. By assuming that the location and flow properties are
known at a point (1) in the adjacent flow field and a point (2) on the solid-
boundary, initial estimates of the flow properties at point (3) are

1
0, z5(01+ 05) (B-38)

My &5 (M + M) . (B-39)

The approximate location of point.(3) onthe solid boundary is then found by
solving simultaneously the physical I-characteristic relationship between
points (1) and (3) and the equation specifying tlie boundary profile. The rela-
tionships to be solved are:
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(R3 - Ri) = (X3 - Xl)ta.n (6 - Cl) i3 (B‘40)

and

R =R (X) (B-37)
S S S

when RS = R3 and XS = X3. Carrying out this simultaneous solution and using
equation (B-36) results in an approximate set of values for
1
[Xn Rr 0 ]3( )

By use of these data along with thé hodograph I-characteristic relationship
between points (1) and (3), the local value of M§‘ can be estimated from

Mg = Mf - Pig(63 - 6;) + PRODy (B-41)

where for 1(8 - a)y3] > 0 (cf. Field Point discussion),

PRODy; = Qu3(Ry - Ry) (B-42)
or for |(9 - Q)ml =~ (
PRODy; = Py [ﬂ%@% (X - X;) - (B-43)
13

Thus, the location and flow properties at point (3) for this first approximation
are determined as:

‘1
[X,R, M*,0]5 ")

For the next and all successive approximations, the (n - :L)th estimates
of [M%,61, %Y are used with equations (B-40), (B-37), and (B-41) through

th
(B-43) to determine the n ~ estimates of [X, R, M*,6 ]3(’}) . This procedure is
repeated until the normalized difference in M;° satisfies the convergence

criterion:
[M?(n) _ M§<(n—1)} /M,a.‘ (a)

Tror ¢ = 104, equation (B-45) is typically satisfied for 5< n< 10.

< o (B-45)
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Thus when equation (B-45) is satisfied, the final values of

(X, R, M¥,0]5 ™

are determined.

5. Flow-Field Analysis (ACPBS)

The unit processes described ahove are organized into a sequential
program which can be used to calculate the flow field subject to the imposed
boundary conditions. This organization is principally one of "bookkeeping' and
is normally not difficult. The basic sequence can take any of several different
forms; the preference bere has been to calculate along Family I characteristics
toward the boundary.

a. Calculation Sequence

The boundary conditions imposed on the flow-field calculation
( Figures B-6 through B~2) are:

1) The flow variables are specified along the initial infernal
{(nozzle) flow or external (free stream) flow characteristic.

2) The conditions along the boundary are specified for the
particular type of boundary condition that is being considered.

These data along with the surface geometry, if applicable, are sufficient to deter-
mine the flow field.

At the nozzle corner (X,“, Ru)a centered expansion (or compression),
can occur as a result of the need for the internal flow to expand (or compress)

at the nozzle exit to satisfy the imposed constant-pressure boundary condition.

A similar situation can also occur for the external (free stream) flow as a result
of expansion (or compression) corners and a solid-boundary preceding the
separation point of the external stream as well as the requirement that the exter-
nal flow must adjust to the pressure level maintained downstream of the separa-
tion point. The general flow-field calculation sequence selected here for -ither
the internal or external flow-field proceeds from the initial Family II chacac-
teristic (nozzle or afterbody) along I-characteristics to the boundary.

The calculation sequence for internal flow and external flow are illustrated
in Figures B-6 and B~7, respectively.
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NOZZLE
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FIELD POINT
BOUNDARY

BOUNDARY
POINY

FIGURE B-6. FLOW-FIELD ANALYSIS

b. Wave Coalescence

The Family II characteristics from the internal constant-
pressure boundary tend to steepen as the calculations proceed in the downstream
direction. These characteristics eventually coalesce and form a shock wave
within the flow field. This condition is detected by the crossing of waves of the
same family thus giving rise to the "foldback" of the characteristics network.
Although flow-field calculations where "foldback" occurs still yield results
which are in reasonable agreement with experiment {7}, the flow-field calcula~-
tions must invariably be terminated as a result of errors direetly attributable
to the unrealistic characteristic network that develops.

An exact treatment of this problem has been given [8], as well as an
approximate treatment [9}. Heowever, since ti:e calculated boundary is
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relatively insensitive to the method v-e i to treat the coalescence problem, a
simplified approach will be described here which is in excellent agreement with
previous reports [3,9].

In reference to Figure 3-8, wave coalescence has occurred within the
flow field. Allowing a single "foldback" at this point, the conditions on the
"upstream' and "downstream'" sides of the coalescence point are determined by
linear interpolation between the points (2) and (3) and the points (2)' and (3)°,
respectively. The ""foldback" points (3) and (3)' are then dropped and the flow-
field calculations are continued by using the flow variables determined at the
wave-coalescent point, Figure B-9.

In actuality, the obligue shock wave formed in the flow field due to the
wave coualescence propagates dcwnstream where it becomes curved as a result
of the continuous interaction between the shock and the waves in the flow field.
As a consequence, the flow is rotational downstream of the internsal shock wave.
In the approximation described above, the flow is assumed to remain irrotational.

This assumption yields, in most cases, results which are acceptable and consis-
tent with the overall analysis,

6, Initial Nozzle Characteristic

The nozzle geometries are restricted to those configurations which
produce sonic, uniform, or conical supersonic flow. The objective is to deter-

mine the flow variables along the initial nozzle characieristic for each
configuration.

a. Sonic Nozzle

The sonic nozzle can be treated approximately as a nozzle which
produces uniform flow at the nozzle exit that is slightly supersonic, e.g.,

Mi‘l = 1.01.

b. Uniform Supersonic Nozzle (UFLUC)

Yor uniform supersonic flow at the nozzle exit {Figure B-10)
the initial I-characteristic is straight and the flow variables are known as

.\lﬁ,uu = 0] along this charascieristic.

The case where an initial compression must exist at the nozzle exit to
satisfy the imposed boundary condition will be considered, in an approximate
way, in the subsection to follow, "A Compression at the Nozzle Exit."
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. — - . - E
S D |
. a= 3in™" {37)
! LY
INITIAL 1-CHARACTERISTIC

Kype By

FIGURE B-10. UNIFORM SUPERSONIC FLOW NOZZLE

¢. Conical Supersonic Nozzle (CNFLOC)

The flow in an ideal conical nozzle (Figure B-11) can be
specified as being at a uniform Mach number (or Mi‘l) along the zone of the

spherical secter that coincides with the nozzle. The initial [-characteristic can

be determined exactly [10}, or numerically from the flow conditions specified
on the non-characteristic spherical surface.

R 1 NONCHARACTERISTIC CURVE
cone '} /_
(AXiS)

¢
INiTIAL 1l-CHARACT ERISTIC
— ..elf 1
a = sin Tr—
()
Py 1"
Xqpe Ry
FIGURE B-11. CONICAL SUPERSONIC FLOW NOZZLE

The numerical approach while vielding values for the initial
I-characteristic that are in excellent agreement with previous exact theoretical




results [10] has the cdvantage of being easily extended to treat approximately
the proiem of an initial compression at the nozzle exit (for both the uniform
and conical nozzles) .

r'he flow conditions are specified along the noin-characteristic curve

(Figure B-12) as being at a uniform value of MTI and that the velocity vector is

always perpendicular to this curve. Any point on this curve is defined by

' | ‘here 0 = ¢ =
[.\,R,M“,UJNC where 0 =0 = ¢ and
X=X + - B-4
X= X +R [coso cos 011] (B-46)
R= R sing , (B-47)
cone
where
= i . B-4
Rc-:me R11 smon ( 8)

NONCHARACTERISTIC CURVE (NC)

(AX[S) i

iINITIAL 1I«CHARACTERISTIC

(Xype Ryp)

FIGURE B-12. CUARACTERISTICS NETWORK FOR NUMERICAL
CALCULATION OF THE INITIAL I[I-CHARACTERISTICS
FOR A CONICAL NOZZLE

The non-characteristic curve is then subdivided and a characteristics

network (Figure B-12) can be used to determine numeri-ally the flow variables

and corresponding loeations on the inttial conical nozzle characteristic.

This general calculation sequence is useful since the calculations are

m:ade from a non-characteristic curve to the corresponding characteristic curve.
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d. A Compression st the Nozzle Exit

If the boundary conditions are such that the nozzle discharges
into a region at a pregsure greater than the supersonic design pressure, an
oblique shock wave is generated in the primary flow field, If this compression
is assumed to be relatively weak, the oblique shock can be treated approxi-
mately as a reversible compression. For either the uniform or conical nozzle,
the flow variables on the noncharacteristic curve and the imposed boundary
conditions are used to establish a single reversible compression wave at the
nozzle exit location (Xll’ RII) which satisfies the boundary conditions. With

these data, the remainder 6f the initial I-characteristic can be established

using the calculation sequence from the non-characteristic curve to the corres-
ponding characteristic curve (Figure B-13),

AXIS

S {I\CHARACTERISTIC
(COMPRESSION)

-~ ————— lI=CHARACTERISTIC
(DESIGN)

Mt

P> Py

FIGURE B-13. APPROXIMATE ANALYSIS OF A COMPRESSION
AT THE NOZZLE EX1T

7. Afterbody Analysis (ABTS)

The afterbody analysis utilizes the unit processes described in

section 4; this analysis must, however, be consistent with the flow-field analysis

of section 5z (Figure B-7). In addition to determining the detailed flow condi-
tions over the afterbody, the final Family II-characteristic originating at the
terminus of the afterbody rust be determined so that the same flow-field calcu-

- lation algorithm can be used for calculating bothk the external and internal flow
fields and constant-pressure boundaries.
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a. Initial and Final Family II Characteristics

The approach flow to the afterbody is currently restricted to
uniform supersonic flow. For this case, the initial II-characteristic is a siraight
line along which the flow properties are constant and known at each arbitrarily
selected subdivision point; this situation is shown in Figure B-14.

ag = sin®! (1/Mg) = CONSTANT

INITIAL ll-CHARACTERISTIC

3(+) )

| Ao

T - - &

FIGURE B-14, INITIAL II-CHARACTERISTICS FOR UNIFORM
EXTERNAL SUPERSONIC FLOW

When an afterbody is present, the points along the final I[I-characteristic
originating at the afterbody terminus are determined as input data for the sub-
sequent constant-pressure boundary calculations. After the I-characteristi:
originating at the initial II-characteristic and passing through the terminus of
the body is found by iteration, the remainder of the points along the final
Il-charucteristic are found by continuing to subdivide the initial II-characteristic
and continuing the method of characteristics calculations to the final
II-characteristic {Figure B-15).

b. Specific Afterbody Profiles (BTCNST)

As discussed in section 4b (''Solid-Boundary Points'), a
simultaneous solution must be made between the equations describing the
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INITIAL I"CHARACTERISTIC

THE LOCATION OF THIS -
POINT IS FOUND BY ITERATION

/

/ FINAL lIsCHARACTERISTIC

s IsCHARACTERISTIC
B THROUGH AF TERBODY
6= 0 TERMINUS
7/
R hN \
AN /o\o \O/j
/O\ \ \o
/( \{/
P\ /
/‘xzs' R
4
OR (Xgryo Rgryp Fypy) (Xygo Ry
OR (Xgrp Rgyo)
8(+) 7

X

- -

- - ¢
FIGURE B-15. DETERMINATION OF THE FINAL [I-CHARACTERISTIC
THROUGH THE AFTERBODY TERMINUS

afterbody profile and the physical I-characteristic; this solution determines
points in the characteristic network which are located on the afterbody surface.

The purpose of this section is to summarize the resulting expressions
for three afterbody shapes — the ogive (circular segment), the parabola, and
the cone. A typical afterbody configuration and the associated notation are

given in Figure B-16; for each shape, the rit.tody is assumed to be completely
specified by the values of

A .
[Xsfrl’ Rpp1s Pppij 2 [XBTz’ RBT2} :

The equations specifying the afterbody's meridional profile are sum-
marized in Table B-I. The constants [Cy, Cg, C3] in the profile equations are
determined for each afterbody based on the values specified at points (BT1}

and (BT2). The resulting expressions for these constants are summarized in
Table B-~II.

33

i A sl

e s e neit ik LN

. st S b At

Sl
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(Xgyae Xgr))

| «rTERBODY PROFILES
OGIVE, PARABOLIC, CONICAL

|
|
0 ) i
"\ D

YIGURE B-16. GENERAL AFTERBODY NCTATION

X

OH ————

TABLE B-I, EQUATIONS OF AFTERBCDY MERIDIONA L-
PLANE PROFILES

Shape R =R (x) . .
S 5 S/ . )
. 2 1/2 i
Ogive R, =Cy+ [C3 - (Xs - cz) } |
. = -2 .
Parabolic RS C3+ CZXs + Cl}xs ;
. = _ i
Conical Rs C1 + CZ(XS C3> .

The simultaneous solution of equations (B-37) and (B-40) has been
carried out for the profiles specified in Table B-1; the results of these solutions

are summarized in Table B-III.
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TABLE B-1II. EXPRESSIONS FOR [X;, Ry, 03] FROM THE SIMULTANEQUS
SOLUTION OF EQUATIONS (B-37) AND (B-40) FOR VARIOUS
AFTERBODY SHAPES

Shape Simultaneous Sclution Values for [X;, Rz, 63]

q
i
i
|

l- B -[B? - 4Ac1y2\

Ogive X3 = A
A=1+tan® (§ - a)y
B = 2\R1 - Cl)tan 0 - Q’)m - 202 - 2% tanz 6 - a)ja
C=Cl = Cy+[(R -Cp) - X tan (6 - a)y? !

R3 = R’l + (X3 - Xl)tan 0 = 01)13

03 = 1:'.111"1"——(02 = %) ]

o

1/ H

. {—B-{BZ-MC]Z} ;
Parabolic | X3 = oK

3 A= Cl g

4 B=Cy,-tan (6 - )3 :

| |

i

C 03 - I{i + X1 tan (0 - a)ia

i
E Ra = Rl + (X3 - Xl)tan (9 - a)ia ?
E 05 = tan~! [Cy + 2C;X;) }
‘o . _ [Cf - Ry = CoCy + X tan (8 - a)y3] ,
Conical | X; [tan (0 - @) 3 - Caql :
i

Ry = Ry + (X3 - X{)tan (0 - @)y3

05 = tan™! (C,) = constant

.
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Appendix C

MIXING ANALYSIS: TWO-DIMENSIONAL
CONSTANT-PRESSURE TURBULENT MIXING

The general references for Appendixes C and D, although not cited, are
several by Korst et al, [11-16].

1. Two-Dimensjonal Constant- Pressure Mixing Region

The two-dimensional mixing region control volume is shown in
Figure C-1.
For constant-pressure mixing with:

a) uniform flowat x= 0

b) fully developed flow at x, the velocity profile within the mixing zone

is given by
Y u 1
$=y=3 [1+erinl,
T ’ &
p U o2 u
Yoabiimb - o oo - oo a
hi where
{
o
i Y n= 2
| ! *
O g0 - : X in which
! T - —-i ~STREAMLINE
| ‘{0 —X (x,y) refer to the intrinsic
i coordinate system
i
Yoo - - ~ S%"IR%EVQE”UE. , o = similarity parameter
Vv B
b x c=12+2.76Ma.

FIGURE C-1. TWO-DIMENSIONAL MIXING
RECION CONTROL VOLUME

2. Determination of Yo

The intrinsic coordinate system is located relative to the reference
coordinates by applying the momentum equation in the x-direction (per unit
width) to the control volume of Figure C-1. The result is:
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Y
RA
2 29V =
- =0 , C-1
ana YR.A + { pu-dy ( )
Rb
but
y = ym(x) + Y
x>~ X .
NOTES:
‘X
(a) J PV U dx = 0,
0
since Ub = 0 at Xl{b'
(b) At YRa' the flow is undisturbed, and
(¢) continuity equation applied to the control volume adds nothing.
Then
ym-!FYRa)
-p_U_* + Wy = 0 . -2
AU S f puldy = 0 (C-2)

(y m+ YRb)

Non-dimensionalizing with (pa, Ua) s

' "Ra .
“igy * J o Fdn=0, (-3
+
7]m an a
where
= gL
n O'X
=1
¢ T
a
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4 Now at Ta and Mok

H‘ 11 - ¢l < ea'
= -
|Toa ) T0| . (an for 7 Mea (C-4)
l ol < eb‘
for n = an . (C-5)

ITB - TOI < gt

] Therefore, equation (C-3) can be rearranged as

]
. "Rb , "Ra (":J"Ra)
-n. + — + 2 fdp +
! ﬂRa f . pa ¢2dn f pa dn f .DE_ ¢2dT) =0 (C—G)
() ", e 7
3
Thus
; "Ra
i pat 2 Gagen =0 (C=17)
%b pa ™
E‘ and consequently,
1
) = - £ -
no= Mg~ o fdn. (C-8)
; gp ®
E 3. Identification of j-streamline
‘n
E Application of the continuity equation to the jet flow yields
i Y
P Ra
| =p U Yy, fY pudy = 0 . (C-9)
E i
4
g In non-dimensional form, equation {C-9) becomes:
:
: 39




e beiall . kel U

Ra 'm b u
-URH.+ _J U dyn {C-10) .
1} a a
2
+ ?
_T)Ra o 37Ra "m o 3
gt J = pdn + J > ¢dn =0, (C-11) i
n a URa a B
or
"Ra
- odn = (. - (C-12)
n, Pa (Ra nm) !
}
and combining cquations (C-8) and (C-12), the integral equatio: = be solved for
1. is i
j
a Ma
Joo =) o dan (C-13) ;
H
nj a an a §
4. Energy Considerations
By use of Crocco's Integral Solution for an apparent unity turbulent ¥
Prandt] number, the stagnation temperature distribution in the mixing region
is given by
1
T,
T A+ Bo (C-14)
0a '
b0, 0 LB '
* T ~ y 1
oa oa

(C-15)

TO
=1, 7o =1, n=w
o
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A=
B=
To
A= T =
Qa
or
where

a. Energy Transferred Across j-Streamline

Shear work and conduction per unit width is

f( Ra m)

Y

In dimensionless form,

g
X

since

(1 - Ay ~0 for pa < U< (7)Ra+n)

equation (C-20) can be simplilied as:

it]

CT
aap oa nj

ej (nRa+ nm)

R

pCp (’I(Ja - To)u dy = ej .

(1 -4 2 gy,
pa

m

(C-16)

(C-17)

(C-14)

(C~19)

(C-20)
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xpUUCT -} (1 A) n ¢)d”
aa pood n, a
)
B Ta ) "Ra ,
: =—'_J — dbdv;-} A= o¢dy .
) P,
n. a n. a
. J
By use of equution (C-13),
] ¢ Ra "Ra ) .
‘ } ' ! 2 * -
—_———— = — - A — i
x ”'117'1(‘1)1‘03 J); Py e {; “a oo
LS Rb §
A
; Yo ey, e
‘ 3 . = J —_ .;sz”-i- J -_ (P'Zdn' J A‘_(I)d”
Ve 7 i) pa 7. pa 7, pa
f{., Rb j i
I
S .
i . Ra )
=] S dd+ [ S 1F - Agdy
1 a i), a
o T ;

% ' . . N
P . LJ j o Ra P e
. g oD + Lg - - (1 - AL\ ‘
i 3 Pata ‘[)'1'0'1 J Pa #an Jrr [9’2 AB¢ AB &

» TRy '

E f'g‘ :
:E"‘»"“. . ”j ”Ra -
= Logkan+ [ LA e A ¢ty
s ) pa ,o,_l B B
: "8h K
2 . Iy
H..H ~ ) P L ha 0 )
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Also from equation (C-13),

i n n 7
Ra Ra Ra
p 2 P o
Jog e [ L Gan= [ 2 gy 8 g
'r)J a an a an a 7)j a
Therefore,
77Ra P ‘nj p
S 7 [¢ - gldn= - [T L 43,
n, Fa Ty, T2
i} Rb
and continuing the simplification, the dimensionless eénergy transfer rate
becomes:
. ej 77j n
= gy - Y
x “a UaToa Jrr Lo P AB f a v
b ZRb an
.
73 )
= [ (1 - AB)¢ > odn . (C-21;
"Ry a

From equation (C-17)

A=AB+(1—AB)¢> or [(I-AB)¢:;=(A—AB) .

lience, equation (C~21) can be expressed as:

e ki
g M = - p -929
xpreT.~ ) (A ) £ e (C-22)
aa poa f a
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b.  Encergy Convected with Mass Between (j)"zmd (d) Streamlines
(with Reference to Zero Temperature) per Unit Width

The energy convected is:

Ta ,
e = {’ pCpuTody (C-23)
J
ar in dimensionless form
e, 4 .
0‘ -
e ] 5 Aedn
a paoa 1 ‘a
and tinally cxpanding the integral
[ | ”d o
g d . g
- — = = A¢dn + — Apd C-24
SRR { o Agdny jn o Agpdn ( )
b Rb i
It A= ”Rb - - :yj, then
¢ uA = =dy

and the lust integral in equation {C-24) can be expressed as:

|

G ‘q?ﬂ"]-:"m‘ S . ?m " e Wﬂww,mrmy?% A

.
o

~ Apdy = - — A¢dr
J - Aodn f - A¢

since
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A> 0,
£ >0 .,
P
a
Therefore, the dimensionless convected energy transfer rate is given by:

7
s 1.

]
)
f pL Apdn - f 5& Agdy
"Rp ? "gp *

[¢]
U d - ~_o
xpCUT (C-23)
a pa oa

The total rate of energy transfer per unit width to the wake is found by
combining equations (C-21) and (C-25).

The result in dimensionless form is
o e

g
g { - . i
xpCUT xp CUT (EJ ed\ (C-28)
a p a oa a p a ova /
g e ‘nj o nd »
e ° _ . d ) )
xp C U T,. AB J Po ¢dy + f o A ¢dy {C-27)
P "Rb ”b
5.° Mass Transfer
Mass rate convecied between (j) and (d) streamlines per unit with
width is
i }’d
gg=J mdy, (C-28)
'3




or in dimensionless form
n n,
og d ]
d : p P
= —_ - —— ¢dy . C-29
U J > odn f N ¢dn ( )

aa Ty ? "Rb

Equations (C-13), (C-27), and (C-29) define results for mixing analysis after

I3 .
¢ and p— are determined.
a

6. Coustant-Pressure Mixing

For an ideal gas, the equation of state is

P = pIRT ;
then for P = constant,
N 3
Paiu pT (C-30)
or
P Ta Ta Toa To Ta 1 To
R i D) e 331
P T T T T AT (C-31)
a oa 0 08
From the energy equation
2
u
. -
1 2C To
p
or
L/ U Z
SRR LA i R S PP (C-32)
U 2C. T oa o’
a P 04,
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Defining the free stream Crocco number squared as

at Ha, 1"

Therefore,

at any ¢,

Ua2
c?=
a 2C T
[¢118
u
T T¢

{C-33)

(C-34)

(C~-35)

(C-36)

(C-37)
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7. Detined Integral Notation

The integral notation is defined by the following equations:

J
Lin J @fg—f‘bT)dn= Il(n, AB,Caz) (C-33)
b a
R GO 2
= = R}
12( l)) _J (A B C 2¢2> d'l IZ s AB‘ Ca) ((/ 9)
R 4
'” 1\ 2
L - | (A =S dn = 13(7,,1\5,0&) (C-40)
”Rb a
where T
- 9 . -
A= Ay + (1 AB) ¢
oa

%. Equation Summary

The equation to be solved tor 1)]_ is:

Ru ”‘ nRﬂ ”Ra

. . ) i »
J p_p' pdn = - J f-)’i ddn + J Bp— ddn = J = ¢\2dn (C-13)
1ij a Y’Rb a an a an a

or in terms of the defined integrals, equations (C-38) and (C-39)

11(\7;1,): [11(7,&1) - 1 (’ﬁ.{a)] ) (C-41)

The relationship between Iy and Ly, I is

n \ R n 2
Iy ) (———11—,-‘\ TR )u;, = A C——QTT\ L )drl + (1 -AB)f (7\~—%~_ 3 ¢;r)d'r/
Ry 4 "Ry 4 "Rb a
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or in terms of the defined integral notation,

= A + -
Iy = ATy (1 AB)Iz

From cquation (T-27), the energy transfer rate becomes

1~ c - . -
( C )xpa o U, T, = [13 (”d) AL, 77J_>] (C-42)
From equation (C-29), the entrained mass rate is

agd

(1 ~ ¢ )xp U [11 (”d) - I (Uj)]- (C-43)

9. d-Streamline Velocity Ratio

For the d-streamline, the recompression criterion yields a value of

the d-streamline Crocco number, Cd' The value of C ,, tle adjacent free stream

data, and the state of the quiescent fluid can then be used to determine the
d-streamline velocity ratio ¢d. This is accomplished in the following way.

|
|

The definition of the velocity ratio is considered:
¢y = ud/Ua (C-44)
or rearranging in terms of the corresponding Crocco numbers,

“d/«/zc 1od Tod %4 [Toa

- = wetam— ————— -d 5
U / T o T . ( C 40)
N p 822 0oa a 0a

The stagnation lemperature ratio can be expressed from equation (C-16) as

T
od _ . _ .
T =Ag= AL+ (1 AB>¢d , (C-46)

where

A =T
B rIB/Toa

rlﬁ@mmw TR S EREEST PR W s A o Sab sl




Therefore by combining equations (C-43) and (C-46), the expression to be

solved for & | is
(

)

d l/
=—1A_+ (1 - A 2,
P07 T [ B ( ! B) ‘bd]
a
SHolving for (:)d, the result is

C
nr . <2 9
I T 1 - A J - 1 - + 4/
“d 2 Lm‘ ( B) * L'Iu' ( AB) lLA\D

where the ratio of the Crocco numbers has been defined as

Cm‘ = Cd/ca :

o

(C-47)

(C-48)

(C-44)
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Appendix D
MIXING ANALYSIS: APPLICATIOM OF THE

TWO-DIMENSIONAL MIXING ANALYSIS TO THE
TWO-STREAM AXISYMMETRIC BASE-PRESSURE PROBLEM

The approximate two-stream flow n.odel is shown in Figure D-1,

(1E) PBE
s U
B
F=E==f SHOCK
| (Xi LR
L~ imp® imp
{
| ///
G, } I 1
L~ B —_
Q ‘ PB
I Pt
-
\ _z .,\/ ug, SHOCK
/
\\,(l) Pl — —— CONTROL VOLUME

(i

FIGURE D-1. APPROXIMATE TWO-STREAM }LOW MODEL
i

1. Two-Dimensional Approximation of the Mass and Energy
Transfer Rates

Superposition of the fwo-dimensional mixing region on the Ycorre-
sponding' inviscid flow field at the impingement point (Appendix C) of
Figure D-1 is shown.

a, External Stream

The approximate entrained mass {iow rate is determined from
cquation (C-43) as
Sp ]
. 2 -
= 1-¢ = I - . -
Gy QWRin:.p( BE) PpepE [‘ (”dl«l) L (”jli)] (-1

I




Fhe approximite enervgy transfer rate is determined from equation (C-142) as:

9
. E
b 2R (l -t il vl -
I mp m.) PSS 1;1-;([)»;101‘:[3(”(11‘;) \BEII(”j}C)] :

IO
{D=-2)

here v - 7T
AT g Book

b Internal Strewn

The entrained mass flow rate is (equation C-43)

=
S\ 1
Goo=ourR L= 5 Y —p 1 - . -
. 1 lnnp( m) v Pppt m[‘(\”m) l‘("jl)] (D=3

The cnergy transfer rate is (equation €-42)
S

, 2yl '
S CONN NS AL VLIRS LN SIS U Y - A T ] L o-
! ‘nnp( lil)(rl STTRE TN Ll‘ (”dx) M) ‘(”;1)] (D-4)

here . [, .
where \nI 'Ili IUI

2. Jonscervation of Mass

For the basce-region control volume, conservation of mass requires
that

Gt G+ Go= 00, (1)-56)

The tern G REERUNHEEE flow rate entering the base region at a negligible veloeity,
4

1.es, Umass bleed,” By introduction, as a reference, of the internal stream's

fnozzle flow) mass tlow rate, U“, cquiation (D~4) can be written in dimension-
less lorm s )

B - a0, {(D=6)
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where the "bleed ratios" are defined by

Bo ; ho ('1\'1

B - -(G /G . 3-3
1 (1-;*(1)/x1 (D-3)

(D-7)

3. Conservation of Lnevgy

IYor the base region conirol volume, conservation of energy requires
that

o+ o4 ENY=0 . -0
o (Lk.' 1) & )

By use of the total enthalpy of the internal stream (nozzle flow) as a reference,
i.e.,

E_o=4 ¢ 1T 0, >=10
N1 NI 1)1'10l (C-10
cquation (D-3) can be written in dimensionless form as
- L- o0, (L-11)
0
where
€ =1 /K -1
o 0/ NI (b-12)
Eo-ofu.+ ) . (D-13)
T 1)/

Thus for conservation of mass and cnergy in the base region, cquations (D-6)
and (D-11) must be simultancously satisficed.

4, Nozzle Mass Flow Rate, UNI

Figure D~2 presents the ideal nozzles and their notation,

For source flow through the conical nozzle (IMigure D-2a) the flow
Mach number is a constaut over the nozzle's exit arvea and the veloeity vector is
always perpendicular to this area,  The exit fluw area is cqual to the aren of the
zone of 4 sphere of radius RN. The exit arca is foumd us:
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FIGURE D-2. IDEAL NOZZLES AND THEIR NOTATION
l{N = 1{1] sin j (D-14)
A: RN(l - Co8 ) (D-15)
::m‘;I
= 2 Yl e ‘D-
Ac 7TRN (1 + cos 1) D-16)

Yor the unitorm flow nozzle (Figure 1-2b) the exil {low area is given
by
A = mRY . D-17
¢ {11 ( )
Thus, for either conical (4 » 0) or uniform (p = 0) flows, the nozzle exit flow
area is given by

A =—20 (D-18)
¢ (14 cos ) 7117

If the tlow is uniform aund one dimensional over the nozzle exit flow area,
the ideal nozzle mass {low rate is given by

“le/l ol _ [T
A R

p M
1011 I

) (D"lg)
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.
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vchere
IRl = goy constant (Ibf-1t/Tbm~-"R)
A11 = exit Ilow area, cquation (D-14) (L&)
Py = exit pressure (Ibi/ 1E)
Tol = gtagnation temperature {"1R)
g = 32,174 (Ibw-ft/ bi-scc?)
¢
GNl = mays flow rate (lbm/sce)
i
then

The functioa F(M,y) canbe expressed in terms of M* as

Y+

< i ol-1
. 2y . o= 1 2
F(M*,y) = [—47]/2 e [1 T 1

or the nozzle mass flow rate becomes

2nR? i /s
1 .
G, = L < J F{M*,v)
1

= >
NI 111 (1 + cos h) IRITO

For uniferm flow, £ = 0, and conical flow 5 > U.

5, The Quantity (pU)

Ior an ideal gas,

(D~20)

(D-21)

{D-22)
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then the mass ilow vate pev unit area fs:

(i) -

, . Jim_ —_— (D~£3)
lm m T Cp

gt b i SRR

By definition of the Crocco number,
> = 2T C = . -26
C u/\[’0 ) u/u_ (D-26)

From the cnergy equation,

1 )
1 + o ’lo , (D-27)
p
the temperature ratio is found in terms of the Crocco number as ;
T
—2= (1 -y, (D-28) '
T i
Rearranging equation (D-25) and substituting cquation (D-26), -i
]
- i
p JZC T o
pu) = T 2 ¢ ’ (D-29) ,
N' (V] :
g
or comblning equations (D-28) and (D-29), '
— §
P12, C '
W) = 5 | —m——— T )-30
(eU) Jl‘ R j(1-CH (D-30)
0 :
But
C C R i R
- = or =
p v p oy - 1)
- p o |- __C (D3
D = 7 — o -
/7 - 1 -
\/m‘o y (1-¢dH |
3
56
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For R in units of (Ibf-ft/lbm-°R), (pU) is given by

[P 1
o vE, Vs .

(pL) = ﬁ‘?c; v -1 (1 - Cz) {D-32)

where in cquation (D-32)

p (Ibmy/1t%)

U (ft/sce)

P (Ibf/L?)

T (°R)

R (lbf-{t/Ibm-°"R)
8, (Ibm-ft/ bi-sec?)

G. Dimensionless Bleed Ratio, B

The dimensionless bleed ratio [equation (D3-8)] is

£~ -
- &S
B - : (D-8)

GNI

By substitution of equations (D-1), (D-3), {D-23), and (D-32) into equation

(D~8) and by using the condition that Py, = P = Py, the Tesult is
-ﬁ = Ring ._P_B. (i.l.ciﬂ> ..l ...S__I _ZYI — CBI {11 Q’dl) - 11 (”]I>]
A -
fu i F(Mll'yl) % B (”'1 1)
Y,
o Sp| By Tor e (17Y) o
T é— ]1_{- T -/— ( -1 CBE 1 (”dE) - 11 (TJjF) (D-33)
g 51 | Bg Top "1 (e Y) -

7. Dimensionless Energy Ratio, E

The dimensionless energy ratio {equation (D-13}] is

E-=- (EE + EI)/ENI . (D-13)

Oy

=
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Loy substitution of equations (D-20, (=1, (D=10), (D=23), and (D-32) into
vt ton D= wdong wath the conditions that

o T YT Y
andd

Yo~ T T e

‘s T T

Ay = Ty Mo

-1

bl 7 .-
Ry 9y Ry Py |yt

o8 5 r gy | .
E oz R““l, (I T ’]l) _1. -_._ll) —-/1 /2 JON Y DR
(f 11"1)

7,

% [Ye (O0Y) s By Tow

. l(- l'd (” ) ~ A ll('l- >] o L -
H S v =1
1 1le dl B ji S (/E ) BT
Ly .
* e - 1 i ENE
e !_“ \"du) Am-; 1(‘3’1)-} (D-i14)

., Coellicients: g, aq, ay

To simplify the notation of equations (D-3') and (D-34), the follow-
ing cousticients have been delined. They are: '

t 1 4 cos s IS 3 2y 11 -1

u 1\imp ( U( os / li) 1 IB )1 /2 ¥ ME Y (D-15)
L T el B oY -4
b | y- ( 1 1)

By L By Pyt !

. ST T 7

s o |y Ty vy (g -ty A .
W A — — (D-56)

oy (B Yo G th)

o K - 1
v (1 1)1 /. P{L-; l_ﬁw /2

U e O] M Yo

. (D-37)
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4. Simplified Forms of (B, ¥)

From cquidions (D=33), (D-35), and (D=56), the dimensionless
mass bleed ratio becomes

- ; - ,
- = N - a.(! - -8
b “{Lm[l' (”dl) ll("j;)J oAy L“(”(u-:) l‘("jl«;)]}‘” )

and fron cquations (D-24), (D-35), and (13-37), the dimensioaless energy
transfer ratio becomes

§
=

= a {L/Bllls (”dl) - ABIII ”jl)} 4 113(-1“‘;[13 (”dbi) = ABEII (”jlu’)]} ‘
(D=39)
oY
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